Investigating the Mechanisms of Amylolysis of Starch Granules by Solution-State NMR

نویسندگان

  • Andrew J. Baldwin
  • Danielle L. Egan
  • Fredrick J. Warren
  • Paul D. Barker
  • Christopher M. Dobson
  • Peter J. Butterworth
  • Peter R. Ellis
چکیده

Starch is a prominent component of the human diet and is hydrolyzed by α-amylase post-ingestion. Probing the mechanism of this process has proven challenging, due to the intrinsic heterogeneity of individual starch granules. By means of solution-state NMR, we demonstrate that flexible polysaccharide chains protruding from the solvent-exposed surfaces of waxy rice starch granules are highly mobile and that during hydrothermal treatment, when the granules swell, the number of flexible residues on the exposed surfaces increases by a factor of 15. Moreover, we show that these flexible chains are the primary substrates for α-amylase, being cleaved in the initial stages of hydrolysis. These findings allow us to conclude that the quantity of flexible α-glucan chains protruding from the granule surface will greatly influence the rate of energy acquisition from digestion of starch.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Physical structure and absorption properties of tailor-made porous starch granules produced by selected amylolytic enzymes

Porous starch granules (PSGs) with various pores and cavity sizes were prepared by amylolysis enzymes. The greatest hydrolysis rate on corn starch granule was observed with α-amylase, followed by gluco- and β-amylases. Temperature increase enhanced glucoamylase reaction rate more drastically than other enzyme treatments. Final hydrolysis level with glucoamylase reached to 66.9%, close to 67.5% ...

متن کامل

A study of starch gelatinisation behaviour in hydrothermally-processed plant food tissues and implications for in vitro digestibility.

The aim of this study was to investigate the role of the plant food matrix in influencing the extent of starch gelatinisation during hydrothermal processing, and its implications for starch digestibility. Differential scanning calorimetry (DSC) was used to provide a detailed examination of the gelatinisation behaviour of five distinct size fractions (diameters <0.21 to 2.58 mm) of milled chickp...

متن کامل

A novel method for classifying starch digestion by modelling the amylolysis of plant foods using first-order enzyme kinetic principles.

Studying starch amylolysis kinetics in vitro is valuable for predicting the postprandial glycaemic response to starch intake. Prediction of starch amylolysis behaviour is challenging however, because of the many physico-chemical factors which influence amylolysis. The Logarithm of Slope (LOS) method for analysis of digestibility curves using first-order enzyme kinetics can identify and quantify...

متن کامل

Optimization of Crystal Violet Adsorption by Chemically Modified Potato Starch Using Response Surface Methodology

In this research, a response surface methodology (RSM) was used to investigate the effects of independent parameters (pH, contact time, temperature, adsorbent dosage, and initial concentration of pollutant), their simultaneous interactions, and quadratic effects on crystal violet adsorption onto two starch based materials in the form of batch experiments. The characterizing results indicated th...

متن کامل

Food & Function

The aim of this study was to investigate the role of the plant food matrix in influencing the extent of starch gelatinisation during hydrothermal processing, and its implications for starch digestibility. Differential scanning calorimetry (DSC) was used to provide a detailed examination of the gelatinisation behaviour of five distinct size fractions (diameters <0.21 to 2.58 mm) of milled chickp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2015